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Specific heats of saturated water vapor and liquid
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This paper introduces a modification of the expression for the specific heat of saturated vapor attribut-
ed to Clausius and widely used in the literature. The proposed formula contains an additional term
which avoids the often-criticized negative value of the specific heat of saturated vapor. Results are given

for the case of water.

PACS number(s): 65.20.+w, 51.30.+i, 44.50. +f, 64.70.Fx

I. INTRODUCTION

Data on the specific heat of saturated water vapor have
been published ever since James Watt developed the
steam engine, and Clausius the appropriate theory [1].
Whereas Watt assumed the value of the specific heat of
water vapor to be about zero, Clausius calculated nega-
tive values. The latter’s ideas were adopted by Helmholtz
[2], Planck [3], and others (e.g., [4]), but Helmholtz in
particular was somewhat doubtful in that he considered
“the odd result of a negative specific heat for saturated
water vapor” to be in contradiction to the behavior of
various other vapors. A recently published textbook [5]
asks the question, “Can a heat capacity be negative?”’ and
gives the answer, “In a canonical state, the heat capacity
cannot be negative, because increasing the mean energy
in the system implies a positive heat capacity.” Other au-
thors [6], for their part, are of the opinion that “there is
no occasion to measure or use the specific heat for the va-
por.” This statement is confronted by published tables of
specific heats of saturated vapors and liquids with both
negative [7] and positive [8] values for the saturated va-
por.

Whereas the heat capacity of the complete fluid system
can be directly measured, the specific heats of the saturat-
ed vapor and condensate can only be calculated from oth-
er measured data, such as the specific heat capacity of the
fluid system in conjunction with the vapor pressure,
internal energies, and densities of the fluid. The connec-

tion between these state parameters will now be look at
once more.

II. HEAT CAPACITY OF A SATURATED
FLUID AND SPECIFIC HEATS OF THE
EQUILIBRIUM PHASES

The heat capacity C of a fluid system is generally a
function of the fluid mass M, the system volume ¥, and
the fluid energy U:

cC=C(M,V,U). (1)
The heat capacity in relation to the mass M represents an

averaged value that no longer depends on M and is called
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the specific heat capacity or, in short, the specific heat of
the fluid system:

C/M=C(,V/M,U/M) . (2)

Depending on the test condition under which the system
is subjected to a change of state, one makes a distinction
between specific heats and characterizes them by means
of the state parameters that are kept fixed in the test. We
are concerned here solely with the change of state of a
fluid with fixed system parameters both M and V. Under
this condition, i.e., V' /M =const, a fluid at a temperature
below the critical value assumes the pressure of satura-
tion (vapor pressure), and is called a saturated fluid. The
specific heat capacity of the fluid system is then
Cym/M=Cy,(1,V/M,U/M), which is referred to as
C, /M (saturation o) by many authors in the literature.
For a given fluid-density value V' /M, the heat capacity is
a function of the fluid energy U /M only.

Let us now take the average of a system parameter by
dividing its value by the mass M, and let us characterize
such a specific system parameter by means of a bar:

v=V/M, u=U/M, c=c(v,u)

If

C(l,v,7). (3)

Since we are dealing with the properties of a saturated
fluid in the following we will omit, for brevity, the
saturation-state indices U or o and write for the vapor
pressure simply p instead of p. or p, and for a specific
system parameter simply X instead of Xx; (energy x =u,
entropy x =s, heat capacity x =c).

In the case of a saturated fluid a system parameter is
additively composed of the phase parameters, which are
characterized by an index for the respective phase [v for
vapor and !/ for liquid (condensate)]:

M=M,+M, V=V,+V, @

U=U,+U, C=C,+C, .

Next we introduce the so-called specific phase parame-
ters, which should not be confused with the specific sys-
tem parameters defined by Eq. (3). They represent quan-
tities that refer to the masses M, ; present in the volumes
¥V, and describe the state of the phases. They are pure

V,
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temperature functions and are likewise characterized by a
phase index. They include, for example, the specific
volumes v, ;, the specific internal energies u,;, and the
specific heats c,; of the vapor and condensate phases in
equilibrium:

vv,IEVv,I/Mv,l’ uv,lEUv,l/Mu,l’ cu,lECu,l/Mu,l' (5)

The specific system parameters and the specific phase pa-
rameters are related as follows:

M =v,M,+v,M,, UM =u,M +u,M,
(6)
cM =c,M, +c, M, .

In particular, the third equation establishes a definite re-
lation between the specific heat capacity of the saturated
fluid and the specific heats of its equilibrium phases.

The specific heat capacity of the saturated fluid (com-
posed of the coexisting vapor and condensate phases) can
be described thermodynamically as a consequence of the
change of the fluid energy due to heat input under the
condition 7 =const that maintains the state of saturation,
as follows:

= |02 | _ 03 | U
aT |, oT M |,,,"
7)
Ue—yde/D  du/T) (
d(1/T) ' d(1/T)

As usual, T denotes the system temperature, p the vapor
pressure, and p the chemical potential of the fluid. Rela-
tions (7) allow the specific heats of the saturated vapor
and the saturated liquid to be given explicitly from Egs.
(6). As shown in the Appendix, calculation yields

o =9 | @01 d(p/T)
wl gr dT d(1/T)
ds d
— v, _ vu,lﬁ[_)_ T
dT  dT dT
|, 2w ®
" dr?  dT?

Here s, ,; are the specific entropies of the vapor and con-
densate.

In the literature, relations (8) are apparently not used
to calculate the specific heats of saturated vapor and
liquid. Other expressions, which are discussed below, are
used instead.

III. EXPRESSIONS FOR THE SPECIFIC
HEATS OF SATURATED VAPOR AND SATURATED
LIQUID FOUND IN THE LITERATURE

The literature contains various expressions for c, ;.
Very often (e.g., [4,7,9,10]) the following expressions are
found:

_ ds, _ du,; dv,,;
wTgr T ar © ar ?
The first equation, ¢, ;= Tds, ; /dT, will have to be looked

c

9)
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at more closely, whereas the second one then follows
direct from the Gibbs-Duhem equations

duv,l dUU’I dSU’l
dr | 4T P 4t

The first expression is substantiated according to, for ex-
ample, Ref. [4] by the fact that the specific heat of the
system can be calculated from the fluid entropy S/M =5
in accordance with =T (d5/ aT);. By analogy,
¢, ;=1Tds,;/dT is then written for the phases. This con-
clusion is not justified, however, because the entropy of a
saturated fluid is a function of s, and s, with
temperature-dependent coefficients, 5=(M,/M)s,
+(M;/M)s;, and reads (expressed in terms of the
measurable parameters density and vapor pressure)
5=vdp/dT —v,/(v,—v;)s, +v,/(v,—v,)s,. By the same
right, from ¢=(3% /dT), it can neither be postulated that
¢, ;=du,;/dT, which would contradict Eq. (10), too.

A diagram (Fig. 1) may help clarify the situation. On a
plot of specific entropies versus InT and specific energies

T=0. (10)
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FIG. 1. Specific entropies and energies of water. The solid
curves give the specific entropy S/M and energy U/M for a
fluid system with critical density and the dashed curves give the
specific values s,; and u,; of saturated vapor and liquid. The
data on the saturation curves are taken from [15] with the refer-
ence values at the critical point u, =0 and at the triple point
5,(T,)=s(ideal gas)=k[%-an,,(T,)/vq(T,)], where v,(T,)
=h3/(2rmkT,)*’* and m is the particle mass, 4 the Planck con-
stant, and k the Boltzmann constant. For a saturated fluid it
holds that s, <S/M <s. and 4, SU/M < u,.
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versus T we can draw the system entropy § and system
energy # as full curves (case v=v,), and the specific sa-
turated values s,,s; and u,,u; as dashed curves (which fit
continuously at the critical point). The slope of the solid
curves is the specific heat capacity of the fluid with criti-
cal density v, i.e.,

g, =C(M,0.M,U)/M =C(1,0.,7, ) .

A comparison of the entropy and energy plots shows that
it is not possible to interpret the slopes of the saturation
curves, Tds,;/dT and du,,/dT, as the specific heats c,;
of the saturated vapor and liquid.

Since ds,/dT <0<ds;/dT, relations (9) immediately
lead to the relations

¢, <0<¢;, C,<0<C;. (11)

Accordingly, the vapor would thus have a negative heat
capacity, and the heat capacity of the fluid would always
be smaller than that of the condensate, C < C;.

A formulation used earlier (e.g., [1-4,11] is

d(SU —Sl)
daT

where [c,];>0 denotes the specific heat of the conden-
sate at constant pressure. Negative numerical values of
¢, are likewise given for water.

If one takes the difference c¢,—c,=(ds,/dT
—ds;/dT)T according to Egs. (9) and (12), one obtains a
negative value:

¢, =c¢+ T, ¢=[c ], (12)

¢,—¢; <0, (13)

this being in contradiction to the known thermodynamic
equations [12]

ac | _ G ¢
v,—v; >0, — | =,
ov T v, 7Y
2 2 (14
g | _ a_pz Tzi_pz_bo )
ov |7 aT~ |5 dT
In a table for water [8] one finds
0<c, <¢ (15)

in the temperature region 273-583 K. These data are
likewise in contradiction to requirement (14).

Occasionally, integral expressions for the specific heats
are linked with other state parameters, e.g., in the rela-
tions [13]

Tc ch
,uZUU,,p—fT cvy,dT+TfT —"T'—’dT, (16)

where the index c refers to the critical state. Taking the
second derivative here yields

_ d’p d’u , d |9, dv,; dp

ot = Yoty = gre Vgt |Tar P\t ar ar |T
_|dsyy  d | dv,
= |t e || T (17)
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In order to put Egs. (8) and (17) into accord, the condi-
tions

d[(dv,,/dT)p]/dT +(dv,,/dT)dp /dT)=0

have to be satisfied in (17), but this is not possible with a
condensable gas. Indeed, to describe the behavior of a
real gas correctly, relations (16) have to be extended as
follows:

1
_ e d(p/T)
w=u.—s.T+v, p+ v d(1/T) Uyl
v T, T.c
e d _ ¢ c Gyl
+T vu,,_Edev”J fT cvy,dT+TfT —dT . (18)

Of the relations (9)—-(18) only Egs. (10), (14), and (18) are
in agreement with the thermodynamic laws.

The foregoing reveals that the specific heats of saturat-
ed vapor and saturated liquid have not been calculated
uniformly in the literature. Figure 2 shows published
data c,, for water, including results for ¢; from Monte
Carlo-simulation calculations [14]. For calculating the
values of ¢, ; according to Egs. (8), (9), (12), and (17), tem-
perature functions for the parameters p, v, ;, and s, ; [15]
were used.

IV. SPECIFIC HEATS OF SATURATED WATER
VAPOR AND LIQUID

By means of relations (8) we will first show that the
value of the specific heat of vapor is positive and is al-
ways larger than that of the condensate. This follows
direct from the third relation (8) if it is borne in mind
that v, >v;, d%p/dT?*>0, and —d*u/dT?>0. Thus for
any temperature it holds that

d’p

T. (19)
daT?
Figure 3 shows the specific heats according to Egs. (8) for
water in the temperature range from the triple point up
to the vicinity of the critical point (limy_ 4 ¢,;— o).

0<¢<e,, ¢,—c¢;=(v,—v;)
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FIG. 2. Specific-heat data c, and ¢, for water as given in the
literature. The various data refer to Ref. [14] (crosses), Ref. [8],
and Eq. (15) (solid curves), Egs. (9) (dashed curves), Egs. (12)
with [c,]; data from Ref. [15] (dotted curves), and Eqgs. (17)
(dash-dotted curves).
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FIG. 3. Specific-heat data ¢, and ¢, for water calculated from
Egs. (8).

The difference to the data in Fig. 2 is of a fundamental
character. The values c,; in Egs. (8) and (9), for exam-
ple, differ exactly by the terms —(dv,;/dT)dp/dT)T,
i.e., in the case of vapor by large positive amounts and in
the case of liquid by smaller negative amounts. In other
words, the c, values calculated according to Egs. (9) are
much too small and the ¢; values somewhat too large.

Let us now consider the heat capacities of the fluid and
its individual phases. In order to specify them one has to
calculate the mass distribution M, /M in the partial
volume V, and M;/M in V, from Egs. (3)-(5); in accor-
dance with the lever rule one obtains

M, V/M—v, M, v,—V/M

, = 20
M v, —V; M v, v, 20

Together with the last line of Egs. (8) this yields the rela-
tions

_MOM—v) (a1 dw |,
v 1—v, /v, dr? v, dT?
and
M-V /v 2 2
C1: v v, d P _ d J
1—v, /v, dTr? dT?
and hence (for T < T, and V/M =v,)
2 2
0<C,<C, C= Va2 _paL |7 1)
dT dT

These relations state that (for a system with critical mass
density) the heat capacity of the saturated vapor is small-
er than that of the saturated liquid. As Fig. 4 shows, the
heat capacity of the vapor outside the critical region is
negligible in relation to that of the liquid; the heat capaci-
ty of the fluid is governed almost solely by the heat capa-
city of the condensate. This applies all the more the
closer one comes to absolute zero. At absolute zero the
heat capacity of each phase vanishes, which is in agree-
ment with Nernst’s view:

2

_ d°p
CU—M(V/M——v,)dTZ T—0
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FIG. 4. Specific heat capacity of water for a fluid system with
critical density. The solid curve gives the specific heat capacity
of the system and the dashed curves give the specific heat capa-
cities of the vapor and liquid phases.
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APPENDIX

We begin our specific-heat calculation by mentioning
the well-known equilibrium state relations between the
specific phase parameters v, ;, s, ;, and u,; and the poten-
tials p and p, i.e., the equations for the saturated fluid:

(s, —s)T —(u,—u;)
:P N
U, 7Y

(Suvl—slvu)T_(uvvl_ulvv) _

v, —, i
575 _dp SO TSIV _dp
v,—v; dT’  v,—y dr”’
U dp/T) WUTwv,  d(u/T)
v, —; d(1/T)’ v, — U, d(1/T)’
d U d’p A B LI d’u T
dT v,—v;, dr1*° dT v,—, ar? "’
duv,l _ dvv,l u,—u = |y dZP _ dZ,u
dT  dT v,—v, vl ar?  qr?

We shall now see that the expressions on both sides of the
last equation are equal to the specific heats of saturated
vapor and saturated liquid (c, ;). These can be calculated
with the help of Egs. (6), (7), and (20) in two different
ways.

(1) We obtain two similar expressions for ¢ as linear
combinations of M, /M and M, /M:
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_ Mv Ml
c=c¢, o +c,—1‘—/[- ,
- Mv + Ml
Tar "M M |y
— duv+dvv d(P/T) ‘jﬁ
dT  dT d(1/T) | M
du dv M
au @ dp/T) | 21
dT dT d(1/T) | M
We can deduce that the coefficients c¢,; and

du,,/dT +(dv,,/dT)d(p/T)/d(1/T) are equal since
they are pure temperature functions, whereas M, ; /M de-
pend on both temperature and fluid density. This yields
the first line of Egs. (8).

Since (1/T)d@ /dT =ds /dT we can also proceed from

an entropy formulation of the problem:

C d Mu Ml

L= |5 —2+s—

T dT | M M |y
[ _dvap | M [ds_dv ap | M0
T |dT dT dT | M dT dT dT | M

Again, the coefficients in front of M, /M yield the ex-
pressions for ¢, ; /T [second line of Egs. (8)], which, more-
over, could also have been obtained from the first line of
Egs. (8) by means of the Gibbs-Duhem relations (10).

(2) From Egs. (6), (7), and (20) we also obtain

1843

_I_/_ ¢ _ CU €y,

‘M v, — vy I
__ v dyp d’u
c=——T— T.

M dT*"  d4dT?

Again, by comparing the coefficients on the right-hand
side of the above equations we find the two relations

c,—¢ 2 c,U;—cCpv 2
v I=dp2T, v¥l 1u=d/.12,T
v,~v; dT v, — U T

and from these we immediately derive the third line of

Egs. (8).
Because of
CyUp—Cpy Cy—C Cy €
=V, —C, = —C
Uv—vl UU'—UI UU"'UI
_. dp
—vvdeT_Cv
2
=UI'EJ_EZ‘T—CI
dT
we can also write
- vV |d*p 14 d*p
=c,— - T=c¢c+ |—— T .
t=c, v, M| ar? ¢ 1Y; v, JT?

Finally, with the above results we confirm that

d U, Y _ €, €

>
dT v,—v;, v,—y
d U,vy—u, C,V;—Cpv
dT v, Uy

v
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